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Abstract

A nonlinear computational aeroelasticity model based on the Euler equations of compressible flows and the linear

elastodynamic equations for structures is developed. The Euler equations are solved on dynamic meshes using the ALE

kinematic description. Thus, the mesh constitutes another field governed by pseudo-elastodynamic equations. The three

fields are discretized using proper finite element formulations which satisfy the geometric conservation law. A matcher

module is incorporated for the purpose of pairing the grids on the fluid–structure interface and for transferring the

loads and displacements between the fluid and structure solvers. Two solution strategies (Gauss–Seidel and Schur-

complement) for solving the non-linear aeroelastic system are discussed. By using second-order time discretization

scheme, we are able to utilize large time steps in the computations. The numerical results on the AGARD 445.6

aeroelastic wing compare well with the experimental results and show that the Schur-complement coupling algorithm is

more robust than the Gauss–Seidel algorithm for relatively large oscillation amplitudes.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Multiphysics problems are represented in a wide range of applications. The study of fluid–structure interactions in

aerodynamics, the thermo-mechanical coupling problem of turbo-machines and the vibro-aeroacoustic problems are

some pertinent engineering examples. Because the solution to these problems requires the coupling of equations from

different engineering fields, there is an increase in the computational load and in the complexity of computational

procedures. Intensive investigations have been performing on aeroelasticity over the last two decades. A review in this

domain can be found in Marshall and Imregun (1996). Transonic airflows around a flexible structure are characterized

by the presence of nonlinearities, such as shock waves and flow-induced vibrations (Dowell, 1995). In the classical linear
e front matter r 2008 Elsevier Ltd. All rights reserved.
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aeroelasticity theory (Bisplinghoff and Ashley, 1962; Fung, 1969), airflow is assumed to be inviscid and irrotational.

Corresponding numerical methods, such as the well-known doublet lattice method (Albano and Rodden, 1969; Rodden

et al., 1971), the vortex-lattice method (James, 1972; Kida and Take, 1983; Mook and Nayfeh, 1990), the panel method

(Bristow and Hawk, 1982; Johnston et al., 1985; Ojha and Shevare, 1985; Petrie, 1978; Schippers, 1982) and the

transonic-small-disturbance (TSD) method (Batina et al., 1988; Goorjian and Guruswamy, 1988; Wissink et al., 1996),

can be found in the earlier literature. However, the linear theory cannot accurately predict the transonic dip (Yates et

al., 1963), which therefore explains why nonlinear aeroelasticity theories are required. Discussions on the behaviours of

the aerodynamic nonlinearity can be found in Bendiksen (2004) and Dowell et al. (2003). The full-potential equation,

which describes the nonlinearity of a transonic flow, produces improved solutions when the shock is weak (Shankar and

Ide, 1988). However, for flows with strong shocks, a high-order model such as one based on the Euler/Navier–Stokes

equations, which provides more complete description of the nonlinearity in transonic regimes, is required to obtain

accurate solutions (Bessert and Frederich, 2005; Guruswamy, 1988; Snyder et al., 2003). There is evidently an increase

in the computational cost. Although the direct method (Leger et al., 1999), where the fluid and the structural governing

equations are combined and treated as a single monolithic system of equations, has advantages on algorithm stability

and accuracy, it is impractical to rewrite a completely new code for solving a complex aeroelastic system (Beckert, 2000;

Farhat et al., 1998; Farhat and Lesoinne, 2000). In fact, computational aeroelasticity which is characterized by

multiphysics is a particular case of fluid–structure interaction (Farhat, 1995). Its evolution is always accompanied by

those of the CFD and CSD models which have different mathematical and numerical properties (Farhat and Lesoinne,

2000; Rifai et al., 1999). Fluid dynamics is dominated by the Navier–Stokes/Euler equations while structural dynamics

is dominated by the elastodynamics equations. Traditionally, due to the computation complexity and computer

technology limitations, a complete aeroelasticity system was analysed using CFD and CSD software separately by

different working groups and then using data communication between them. Such loosely coupled strategy becomes less

effective for large structures with higher computational accuracy. The coupling strategy in computation replaces the

separating working groups through the CSD and CFD solvers with moving mesh and uses an information transfer

module for the communication between them (Farhat et al., 1995, 2006). This strategy facilitates the development of the

complete software by developing CSD and CFD codes separately. The most interesting feature of this coupling strategy

is the reutilization of the existing well-established CSD and CFD codes (Cebral and Lohner, 1997).

In this paper, the aeroelastic system is modelled by three fields (the structural, the fluid and the mesh fields) through an

information transfer module. As the focus is on the nonlinear behaviour due to the transonic flow, we assume that the

flow is described by the Euler equations and that the structure is modelled through the linear elastodynamic equations

rather than nonlinear structural dynamics (Patil and Hodges, 2004). The nonlinear coupling between the structure and

the fluid is reinforced by imposing kinematic and dynamic compatibility conditions at the fluid–structure interface (FSI).

One important numerical issue addressed in this paper is to find ways to compute a global solution to the coupled

nonlinear fluid–structure problem. There are many possible solutions to the problem. At one extreme one can simply try

to solve the whole coupled system by a Newton-type iteration. The disadvantage of this viewpoint is that the various

variables of the system do not have the same scale and the meshes for the solid and fluid do not easily match. These can

be handled, but the problem will end up being difficult to solve as a whole. At the other extreme, one can simply use a

very common ‘‘self-consistent-field’’ iteration: solve the fluid problem by fixing the structure variables then update the

mesh by using the resulting fluid variables (pressures on the structure), and repeat the process until there is no change in,

for example, the structure mesh. This basic procedure can now be accelerated, for example, by a form of nonlinear

generalized minimal residual (GMRES). To be specific, we can select one variable to accelerate and proceed to

accelerate the fixed-point iteration. There are many choices possible. This paper examines some of these choices and

compares them. It is important to note that there are many practical situations in science and engineering which are

similar to the one just described. The techniques described in this paper may be applicable to other situations.

The remainder of this work is set out as follows: the governing equations of the complete system are presented, followed

by a description of the coupling algorithms and then a discussion of numerical results; we end with concluding remarks.
2. Aeroelasticity problem

Aeroelasticity is one of the most important and challenging examples of multi-physics applications. It couples two

nontrivial applications and is characterized by multiscale phenomena, both in time and space. Finding efficient solution

to this problem is critically important in the design of aircraft. Coupling between the fluid flow and the flexible structure

displacement can produce instabilities which may compromise structural integrity. The flutter is a dynamical instability

phenomenon exhibited by a flexible structure under the effect of high flow speed, and so it is thus crucial to ensure that

the flexible structure is aeroelastically stable, particularly in the case of structures used as aeronautic components.
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2.1. Governing equations

2.1.1. Structure-related equations

The displacement us of a flexible elastic structure satisfies the dynamic equilibrium equations:

rsu
s
i;tt þ ss

ij;jðu
sÞ ¼ gi in Os, (1)

where rs is the structure density and rs is the Cauchy stress tensor. We assume an elastic material of the structure and

small structural deformations. Thus, the constitutive relation between the Green strain tensor �s and the Cauchy stress

tensor reads rs ¼ Cs � �s, with Cs being the fourth-order constitutive tensor of the structural material and

�s
ij;j ¼

1
2 ðu

s
i;j þ us

j;iÞ. The structure is subjected to external forces and initial conditions. It is particularly important to

ensure that kinematic and dynamic compatibility conditions at the FSI Gfs are respected.

2.1.2. Fluid-related equations

We assume that the fluid flow is modelled by the compressible Euler equations. These are written in a moving frame

of reference, i.e., moving mesh (Donea, 1982; Soulaı̈mani and Saad, 1998), and in terms of the conservative variables

U ¼ rð1; u; eþ kuk2=2ÞT as

U;t � wiU;i þ Fi;i ¼ 0 in Of , (2)

where r is the fluid density, u ¼ fuig is the fluid velocity, p the pressure, e the total energy per unit mass, Fi ¼

uiUþ pð0; di; uiÞ
T is the convective flux in the ith direction, di ¼ fdijg is the Kronecker delta and w ¼ fwig is the mesh

velocity.

2.1.3. Compatibility conditions at the FSI

Since the fluid is assumed to be inviscid, the interface is a slip material boundary. That means that we have the

following kinematic boundary condition along Gfs: ðu� us;tÞ � n
s ¼ 0 with ns being the unit normal vector at Gfs. The

force acting on the structure is due to the fluid pressure. Thus, we have the dynamic compatibility conditions along the

interface: ss
ijn

s
j ¼ �pns

i .

2.1.4. Mesh movement-related equations

The mesh of the fluid domain is animated with its specific motion in order to fulfill the kinematical compatibility

constraints (i.e., to preserve material boundary characteristic of the interface) and to maintain the quality of the

discretization. This can be done by solving an elliptic problem for the mesh displacement um (Soulaı̈mani and Saad,

1998). At the FSI the mesh displacement is imposed to that of the structure. To find the displacement of the points in

the interior of Of , we assume that the mesh represents an isotropic elastic material and its motion is assumed to be

governed by the elastodynamic equations:

rmum
i;tt þ sm

ij;jðu
mÞ ¼ 0 in Of , (3)

where rm is the fictitious mesh density and rm is the Cauchy stress tensor. The mesh velocity is given by w ¼ um;t . The

boundary conditions are: um ¼ us at Gfs and zero elsewhere. We denote by Fm the deformation tensor of the mesh

movement, i.e., Fm
ij ¼ dij þ um

i;j . The mesh deformations are not assumed to be small, so the Green strain tensor Em is

given by Em ¼ 1
2 ðF

mTFm � IÞ. Thus, the constitutive relation between the Green strain tensor Em and the second Piola–

Kirchoff stress tensor Sm reads: Sm ¼ CmEm, with Sm ¼ g Fm�1smðFmÞ
�T, g ¼ detðFmÞ and Cm being the fictitious

fourth-order tensor for the mesh material.

2.2. Space discretizations

2.2.1. Finite elements for the structure

The equilibrium equations for the structure and for the mesh are discretized using a classical weak variational

formulation and finite element interpolations (three-dimensional continuum elements for the mesh, and structural

elements such as shells, solids, beams and trusses). The discrete sets of equations for the structure are written in the

matrix form as

MsfUsg;tt þ KsfUsg ¼ fGsðpfsÞg, (4)

where fUsg is the set of structural degrees of freedom. Note that by introducing the dynamic boundary conditions at the

FSI, the right-hand side of (4) becomes dependent on the fluid pressure. The linear time-dependent system (4) can be
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solved either by using a direct time-stepping approach or by using a modal superposition analysis. We adopt the latter

approach. Thus, Eq. (4) is transformed into a set of m ordinary differential equations where the unknown is the

generalized modal displacement vector fZðtÞg:

fZg;tt þ KfZg ¼ fgsðpfsÞg, (5)

where K ¼ diagðo2
1; . . . ;o

2
mÞ, o

2
i are the m-eigenvalues of the problem: Ksffig ¼ o2

i M
sffig and fi are the eigenvectors.

The vector of nodal displacements fUsg is related to fZg by fUsg ¼ FfZg with F ¼ ½f1; . . . ;fm� and fg
sg ¼ FTfGs

g.
2.2.2. Finite elements for the fluid

The space discretization of the Euler equations is achieved through the Stream-Line-Petrov-Galerkin method

(Hughes and Mallet, 1986; Soulaı̈mani and Fortin, 1994). Consider a partition of the fluid domain into elements Oe.

The SUPG formulation reads: find U such that for all weighting functions W,

X
e

Z
Oe

ðWþ ðAt
iW;iÞ � tÞ � ðU;t � wi;iUþ Fi;iÞdOþ

X
e

Z
Oe

neW;iU;j dO ¼ 0, (6)

where Ai ¼ qFi=qU is the Jacobian matrix of the convective flux, ne is a positive coefficient dependent on the local

residual vector R ¼ ðU;t � wi;iUþ Fi;iÞ, and the matrix t is commonly referred to as the matrix of time scales (Hughes

and Mallet, 1986; Soulaı̈mani and Fortin, 1994; Soulaı̈mani et al., 2001). The SUPG formulation is built as a

combination of the standard Galerkin integral form and a perturbation-like integral form depending on the local

residual vector. The objective is to reinforce the stability inside the elements. The FE approximation of the variational

formulation (6) uses linear piecewise polynomials over tetrahedral elements. The discrete system corresponding to (6) is

written as

Mf fUfg;t þ Kf ðfUf g; fWf gÞfUf g ¼ fGf
g, (7)

where fUfg is the set of the fluid nodal degrees of freedom, Mf is the fluid mass matrix and Kf is the stiffness matrix of

the fluid. Since theses matrices and the right-hand side of (6) are obtained by an integration achieved over a moving

domain, they are implicitly dependent on the structural displacement fUsg. Thus, there is a two-way coupling between

the structure, the fluid and the moving mesh fields.
2.2.3. Finite elements for the mesh

A standard Galerkin variational formulation is established to solve (3). The corresponding discrete set of equations

for the mesh is written in matrix form as

MmfUmg;tt þ KmðfUmgÞfUmg ¼ fGm
ðfUgsÞg, (8)

where fUmg is the set of mesh nodal degrees of freedom. Since the density rm can be chosen arbitrarily, we set it to zero.

Thus Eq. (8) presents a nonlinear steady problem. To avoid large distortions of small elements as the interface moves,

the constitutive material properties of the mesh are chosen in the form Cm ’ I=jOej, where jOej is the volume of the

corresponding element. Linear FE approximations over tetrahedral elements are used.
2.3. Time discretizations

Implicit time marching schemes allow the use of large time steps for the structure as well as for the mesh and fluid

fields. We adopt the trapezoidal rule (Newmark scheme) to integrate (5). We must solve

Z
ðnþ1Þ
i ¼

Dt2=4

1þ o2
i Dt2=4

gsðpfsÞ
ðnþ1Þ
þ

1

4Dt

Zn
i

Dt
þ _Zn

i þ
Dt

4
€Zn
i

� �� �
, (9)

where _Zn
i ¼ 2ðZn

i � Zn�1
i Þ=Dt� _Z

n�1

i , €Zn
i ¼ 4ðZn

i � Zn�1
i Þ=Dt2 � 4 _Z

n�1

i =Dt� €Z
n�1

i , and Dt is the time step.

For the fluid, we choose an implicit scheme where the time derivative is approximated by a second-order backward

difference scheme,

fUf g;t ’ ð3fU
f;nþ1g � 4fUf;ng � fUf;n�1gÞ=ð2DtÞ.

Inserting this approximation into (7) results in a nonlinear system for the fluid d.o.f. at each time step. The systems of

Eqs. (8) and (9) are solved by a Newton-GMRES iterative algorithm (Soulaı̈maani et al., 2002).
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2.4. Fluid–structure interface

A major stumbling block here lies in the fact that the mesh for the fluid and that for the structure do not match. A

mechanism must be incorporated to establish a correspondence from the fluid solver to the structure solver (Fig. 1).

Specifically, compatibility conditions must be guaranteed at the interface between the fluid and the structure (Farhat

et al., 1998; Lohner et al., 1995; Rifai et al., 1999). Since nodes on both sides of the interface do not need to match, a

search algorithm is used to identify the structure element that contains the fluid node. Once this mapping is obtained,

local pressure forces are computed at each fluid interface node and then interpolated at the structure interface nodes.

The resulting pressure load is used as a boundary condition for the structure. As the structure moves, the displacements

of the fluid nodes at the interface are obtained by simple interpolation. These are then used as boundary conditions for

the mesh solver. The grid velocity is computed for each fluid node and the kinematic boundary conditions at the

interface are updated.

3. Solution methods

The nonlinear aeroelasticity model describing the coupling (Fig. 1) of the fluid, mesh and structure fields can be

presented in the following form (Soulaı̈mani et al., 2005):

R1ðY;ZðpfsÞÞ

R2ðY;ZðpfsÞÞ

( )
¼ 0, (10)

where Y is the set of fluid and mesh variables which consist of vectors Uf and um, ZðpfsÞ is the set of structural variables,

pfs is the pressure at the FSI, R1 and R2 are the nonlinear discrete residuals of the fluid, mesh and structural variables,

respectively.

The above coupled system can be formulated as a system of nonlinear equations:

F ðUÞ ¼ 0 with U ¼
Y

Z

� �
. (11)

There are several approaches for use in solving the system (10) or (11). The first of which involves linearizing the system

and using a Newton-type method. The linear system resulting from the linearization would be

KT

dY

dZðpfsÞ

 !
¼ �

R1ðY;ZðpfsÞÞ

R2ðY;ZðpfsÞÞ

 !
, (12)

where KT is the tangent matrix, formally written as

KT ¼
A C

D B

� �
. (13)

A major difficulty with this ‘‘fully coupled’’ approach is that the coupling sub-matrices C and D are not practically

available. Indeed, they are difficult to express analytically and their approximation by some approximate differencing

formulas would end up being too costly.
Local pressure Pressure forces at fluid
interface nodes

Projection

Pressure forces at solid
interface nodes

Pressure loadStructural analysis

Fig. 1. Fluid–structure data exchange.
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An alternative which does not explicitly require Jacobians involves using a nonlinear GMRES procedure to solve the system

of nonlinear equations F ðUÞ ¼ 0, [see, e.g., Brown and Saad (1990), Kerkhoven and Saad (1992), Wigton et al. (1985)]. Given

the current iterate Un, we seek a new iterate Unþ1 ¼ Un þ dn, where dn is in some subspace to be defined shortly. Ideally, we

wish to minimize kF ðUn þ dnÞk2 over this subspace. This is a nonlinear optimization problem which is best solved by using a

linear model. Specifically, an approximate solution is obtained by seeking instead to minimize kF ðUnÞ þ Jndnk2 where Jn is the

Jacobian matrix of F at the pointUn. If we were able to exactly solve the linear system Jndn ¼ �F ðUnÞ in the selected subspace,

this would just lead to a standard Newton step. A natural idea is to take an approximate Newton step which corresponds to

selecting the Krylov subspace Km ¼ fv1; Jnv1; . . . ; J
m�1
n v1g, where v1 ¼ �F ðUnÞ=kF ðUnÞk2. This amounts to an inexact

Newton iteration where each linear system is approximated by m steps of the (linear) GMRES algorithm. It is also possible to

add a backtracking strategy [see, e.g., Brown and Saad (1990)] in order to improve global convergence.

The nonlinear GMRES algorithm is sketched below. The iteration index n is dropped to simplify notation. Note that

the algorithm only requires the Jacobian matrix J in the form of matrix-vector products on line 6. Even when the

Jacobian is not explicitly available, this product can be performed through a finite difference formula, such as

J:v �
F ðUþ �vÞ � F ðUÞ

�
. (14)
Algorithm 1: Nonlinear GMRES
1.
 Start: Choose initial U and a dimension m of the Krylov subspace.
2.
 Arnoldi process:
3.
 Compute b ¼ kF ðUÞk2

4.
 and v1 ¼ �F ðUÞ=b.

5.
 For j ¼ 1; 2; . . . ;m do:
6.
 Compute Jvj (where J ¼ Jacobian of F at U)
7.
 hi;j ¼ ðJvj ; viÞ; i ¼ 1; 2; . . . ; j;

8.
 v̂jþ1 ¼ Jvj �

Pj
i¼1hi;jvi
9.
 hjþ1;j ¼ kv̂jþ1k2 and vjþ1v̂jþ1=hjþ1;j
10.
 EndDo
11.
 Define the ðmþ 1Þ �m matrix H̄mfhij if ipj þ 1; 0 otherwiseg
12.
 and Vm � ½v1; v2; . . . ; vm�
13.
 Form the approximate solution: Find ym the minimizer of
14.
 fðyÞ � kbe1 � H̄myk2,where e1 ¼ ½1; 0; . . . ; 0�
T .
15.
 Compute d ¼ Vmym
16.
 Backtrack: Choose a damping scalar lp1 such that
17.
 kF ðUþ ldÞk2 decreases sufficiently relative to kF ðUÞk2.
18.
 Restart: If satisfied stop, else set U Uþ ld, and goto (2).
Note that this requires one residual evaluation per nonlinear loop (lines 2 to 15) since F ðUÞ does not change throughout

this loop and it can be saved.

3.1. Nonlinear block-Jacobi

When the mapping F is linear, i.e, when it is in the form FðUÞ ¼ b� K �U, then the algorithm just given would be

equivalent to a standard GMRES method for solving the system KU ¼ b, without preconditioning. One

preconditioning possibility involves using a block-Jacobi approach which consists of defining the preconditioner as

the matrix obtained from neglecting the coupling submatrices C;D in (13):

½M� ¼
A 0

0 B

� �
. (15)

Unlike the coupling matrices C;D, the sub-blocks A and B are readily available.

Another interpretation of the resulting procedure, is that the nonlinear GMRES algorithm is attempting to accelerate

a secant-Newton procedure formed as

Ynew

Znew

 !
¼

Y

Z

� �
�

A�1R1ðY;ZðpfsÞÞ

B�1R2ðY;ZðpfsÞÞ

0
@

1
A. (16)
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The resulting procedure essentially solves Eq. (12) iteratively by replacing the tangent matrix KT with the block

diagonal matrix (15).

3.2. Nonlinear Gauss–Seidel algorithm

Next, we consider two alternative iterative schemes. The first is a nonlinear Gauss–Seidel iteration whereby the

solution of the CFD solver at instant tnþ1 is computed assuming that the solution of the CSD solver at the same step is

already known and vice versa, for the solution of the CSD solver. Under well-known conditions (Ortega and

Rheinboldt, 1970, Chapter 10) this iteration will be contracting in a certain D, such that it will converge to a unique

fixed point for any initial guess in the domain D. At the limit the coupling is ‘consistent’, in the sense that the pair of

solutions found will satisfy both equations at the same time. The overall convergence rate is conditioned by the time

step used and by the magnitude of the motion. Though the analysis in Ortega and Rheinboldt (1970) is for the scalar

SOR-Newton iteration, it can be generalized to cover a block-SOR case. Recall that the case o ¼ 1 corresponds to the

(Block) Gauss–Seidel iteration. This algorithm is summarized in Algorithm 2.
Algorithm 2: Nonlinear Block Gauss–Seidel iteration
1.
 Loop over time steps:
2.
 Until convergence Do:
3.
 Update the fluid field using the new boundary conditions.
4.
 Project fluid forces on the structure.
5.
 Update the structure displacements.
6.
 Update the mesh configuration using the new interface positions.
7.
 Check for convergence criterion.
8.
 EndDo
9.
 EndDo time loop
This specific scheme has often been advocated in the literature. For example, in the semi-conductor device simulation

literature, it is known as Gummel’s method (Kerkhoven and Saad, 1992). Many researchers observed that this form of

block-relaxation scheme can be accelerated by a projection-type technique such as GMRES (Brown and Saad, 1990;

Wigton et al., 1985; Chan and Jackson, 1984; Reisner et al., 2001). This is based on the observation made above that

Algorithm 1 requires the Jacobian only in the form of matrix-vector products which can be evaluated with the simple

formula (14). The resulting scheme is often referred to as a nonlinear Krylov method.

The procedure can be described as follows. After each step in Algorithm 2, the iterates undergo a transformation

which can be written as

Ynew

Znew

 !
¼M

Y

Z

� �
, (17)

in which M is the nonlinear mapping which corresponds to applying one step of the nonlinear Gauss–Seidel iteration.

The iteration is attempting to solve the nonlinear equation:

Y

Z

� �
�M

Y

Z

� �
¼ 0. (18)

We could consider applying a Newton-like procedure based on Algorithm 1 for solving this system of equations. We

will refer to this scheme as a Gauss–Seidel–Newton iteration.

3.3. Nonlinear Schur-complement algorithm

Upon eliminating the Y variable from system (10), the equations to be solved can be restated in the following form:

RðZðpfsÞ; tÞ ¼ 0. (19)

The idea now is to tackle the above problem as a nonlinear equation in Z. It can be seen that R ¼ R2 �DA�1R1.

Applying Newton’s iteration to Eq. (19), leads to a solution of a linear system of the following form:

R0ðZÞdZ ¼ �RðZðpfsÞÞ, (20)
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where R0 ¼ B�DA�1C is the Jacobian of R. Thus, if the problem (19) has a solution, then a solution to the original

coupled fluid–structure problem can be easily obtained. When dZ ¼ 0, the FSI does not move, which implies that the

fluid force does not change. However, the Jacobian R0 is not practically computable. Since the nonlinear version of

GMRES, Algorithm 1, requires only the action of the product of this Jacobian multiplied by a vector V, the matrix R0 is

actually not explicitly needed. Algorithm 1 can be used to solve the Schur-complement problem (19). The products Jv in

line 6 of this algorithm can be approximately evaluated by a simple forward finite scheme, analogous to (14):

R0ðZÞ � V �
RðZþ eVÞ �RðZÞ

e
, (21)

where e is a small coefficient. The small-size linear system (20) (its size is actually the number of structural dry modes m)

converges exactly in m iterations, even without any preconditioning. The most time-consuming part of this algorithm is

in the construction of the Krylov subspace. Significant savings can be obtained by freezing the Krylov subspace for a

few time-iterations. However, before the Krylov directions can be generated, the pressure at the interface must be

determined through the following computational steps.

3.3.1. Calculation of interface pressures
1.
 Compute the coordinates of the structure corresponding to the perturbed modal coordinates Zþ eV.

2.
 Update the coordinates of the fluid nodes at the interface.
3.
 Update the mesh coordinates.
4.
 Update the fluid field.
5.
 Project the fluid pressure on the interface.
4. Numerical results

Numerical simulations were performed on the aeroelastic wing AGARD 445.6. This wing has a symmetrical airfoil

NACA 65A004 and a quarter-chord 451 sweepback and is immersed at a zero angle of attack in a transonic airflow. It
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has a mass of 0.1276 slug (1.86227 kg), a Young’s modulus of 4:7072� 105 psi ð3:2455� 109 N=m2Þ, a Poisson ratio of

0.31 and a density of 0:8088 slug=ft3 ð416:86kg=m3Þ. The structural domain is discretized by 1176 quadrilateral shell

elements. The modal parameters are extracted using the commercial software ANSYS. The natural frequencies of the

first five modes which are 9.6, 39.4, 49.6, 96.1 and 126.3Hz, and the modal vectors presented in Fig. 2 are in good

agreement with the experimental results (Yates et al., 1963). A coarse fluid mesh having 177 042 linear tetrahedral

elements and 37 965 nodes is used. Since the strongest variation of the fluid variables occurs around the wing, the

elements near the wing are much smaller than those in the rest of the fluid domain. There are 12 921 fluid nodes and

25 684 triangular elements on the wet surface of the wing on which slip boundary conditions are applied. Since the

structural motion has no influence on the far-field boundaries, the flow is imposed as the incoming flow. The initial

solution for the CFD solver is obtained by considering the wing as a rigid structure. The corresponding fluid

configuration is considered as the initial state of the unsteady flow. From this state, a Dirac force is applied on the point

located at the intersection between the wing tip and the leading edge. The Mach number of the oncoming flow is chosen

as 0.96 in order to simulate the critical point of the transonic dip. The results of the flutter boundary prediction with our

parallel code can be found in Soulaı̈mani et al. (2004).
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4.1. Numerical simulations with nonlinear Gauss–Seidel coupling algorithm

First, for the purposes of accurately capturing the flutter dip, a relatively small nondimensional time step of 0.1 which

corresponds to a real time step of 2:01� 10�4 s is used in the numerical simulations. At the aerodynamic pressure of

60 lb=ft2 of the oncoming flow, the amplitudes of the lift and the generalized displacements ðz1; z2Þ of the first two

modes, which dominate the responses of the structural displacements, are constant and the critical flutter is captured.

When the aerodynamic pressure of the oncoming flow increases to 61:3 lb=ft2, the responses of the amplitudes of the

wing increase, and the wing is set beyond the flutter point (Fig. 3). In order to reduce the computing time, the numerical

simulations with an increased nondimensional time step of 0.3 are performed, and the flutter point is also captured at

the aerodynamic pressure of 60 lb=ft2. Fig. 4 presents the time histories of the generalized displacement of the first two

modes in comparison with another case with a higher aerodynamic pressure of 61:3 lb=ft2.
At the flutter point with an aerodynamic pressure of 60:0 lb=ft2 and a Mach number of 0.96, the damping coefficients

are very small positives or negatives (see Simulations 1 and 3 in Table 1), the coalesced frequency of 13.5Hz (84.8 rad/s)

of the first two modes is very close to the experimental frequency of 13.9Hz (87.3 rad/s) (Yates et al., 1963). The spectral

distributions of the first two modes obtained with the fast discrete Fourier transform fully confirm the frequency

coalescence (Fig. 5). The frequencies of the lift and the first two modes have practically the same value at the flutter

point. This flutter aerodynamic pressure also agrees with the computational data in (Gupta, 1996; Lesoinne et al., 2001).

When the aerodynamic pressure was increased to 61:3 lb=ft2, the amplitudes of the generalized displacements of the first

two modes start to increase, as does the difference in the frequencies of the oscillation. Table 1 summarizes the damping

coefficients and the frequencies of the oscillation of the lift and the generalized displacements of the first two modes of

the numerical simulations (Feng, 2005). In Simulations 1 and 3 with an aerodynamic pressure of 60:0 lb=ft2, the
damping coefficients are nearly zero and the frequencies are almost equal. The system reaches the flutter point (Fig. 6).

In Simulations 2 and 4 with an aerodynamic pressure of 61:3 lb=ft2, the damping coefficients become negative, and the

difference in the frequencies of the first two modes starts to increase. The responses of the system indicate the flutter

(Fig. 7). Simulations 3 and 4 show that the nondimensional time step can be increased from 0.1 to 0.3, and thus the

computational speed is almost three times faster than in Simulations 1 and 2.
4.2. Numerical simulations with nonlinear Schur-complement coupling algorithm

The Gauss–Seidel coupling algorithm gives satisfactory results when the perturbation is small. However, it may show

signs of numerical instability or may even crash as the perturbation becomes strong. The Schur-complement coupling

algorithm can improve the robustness of the code. As the structural displacements increase, the linear mesh model

becomes unstable. Fig. 8 shows the comparisons of the generalized displacements of the first two modes obtained by the

Schur-complement algorithm with linear and nonlinear mesh models. From this figure, we can see that the code gives

the same results at the beginning of the simulations, but the simulation with a linear mesh model stops at one point due

to the difficulty of convergence. Fig. 9 shows the comparison of the numerical results obtained from the two nonlinear
Table 1

Frequencies and damping coefficients of the AGARD 445.6 wing

Nondimensional time step Number of simulation pref ¼ 60 lb=ft2 pref ¼ 61:3 lb=ft2

Simulation 1 Simulation 2

Lift Mode 1 Mode 2 Lift Mode 1 Mode 2

0.1 Damping 0.00063 0.00063 0.00065 �0.0054 �0.00477 �0.00375

Frequency (Hz) 13.51 13.53 13.53 13.75 13.6 13.63

State Calculated flutter point Flutter with a small increasing amplitude

Simulation 3 Simulation 4

Lift Mode 1 Mode 2 Lift Mode 1 Mode 2

0.2 Damping �0.00017 �0.00017 �0.00025 �0.00537 �0.00475 �0.00667

Frequency (Hz) 13.52 13.52 13.52 13.58 13.58 13.6

State Calculated flutter point Flutter with a small increasing amplitude
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coupling algorithms at a Mach value of 0.96 and an aerodynamic pressure of 60 lb=ft2. The strong force perturbation

yields strong structural displacements which are 20 times larger than that of the test in the previous section. It is

observed that the aeroelastic responses with the Schur-complement coupling algorithm are more stable than those with

the Gauss–Seidel coupling algorithm.
5. Conclusions

A nonlinear computational aeroelasticity model has been developed using tight coupling algorithms. These coupling

techniques re-use the developed linear CSD solver based on the modal analysis and the nonlinear CFD solver modelling

the Euler equations. However, a matcher module and a mesh solver are required in order to match the CSD and CFD

grids on the fluid–structure interface and to adapt the moving fluid boundaries. Using the second-order time
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discretization scheme and a nonlinear moving mesh model, we are able to use large time steps for the staggered coupling

algorithms. This model is applied to the standard aeroelastic wing AGARD 445.6 in order to predict the wing flutter,

especially the transonic dip. With a modest perturbation in transonic flows at Mach number 0.96, the results of the

flutter simulation by the Gauss–Seidel coupling algorithm agree well with those in the references.

The Schur complement technique proposed in this paper provides a simple, yet effective, solution to the problem of

self-consistency in multiphysics simulation. The rationale for this approach is that one can solve for a small set of

selected variables in the model. In our case, this set of structural variables corresponds to the number m of modes which

is usually small. The reduced system (i.e., Schur complement system), which eliminates the other variables, is then

solved by a nonlinear Krylov acceleration. In the linear case, it is possible to show that the method will converge in at

most m steps if there are m variables. In our experiments the algorithm converges in m steps despite its nonlinearity. In
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addition, it appears that under stronger perturbation conditions, this Schur-complement coupling algorithm is more

robust than the other approaches with which it was compared.
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